A Hypothesis and Review of the Relationship between Selection for Improved Production Efficiency, Coping Behavior, and Domestication

WM Rauw, AK Johnson, L Gomez-Raya, JCM Dekkers

Frontiers in Genetics 2017, Volume 8, Article 134, pp 1-13

Coping styles in response to stressors have been described both in humans and in other animal species. Because coping styles are directly related to individual fitness they are part of the life history strategy. Behavioral styles trade off with other lifehistory traits through the acquisition and allocation of resources. Domestication and subsequent artificial selection for production traits specifically focused on selection of individuals with energy sparing mechanisms for non-production traits. Domestication resulted in animals with low levels of aggression and activity, and a low hypothalamic–pituitary–adrenal (HPA) axis reactivity. In the present work, we propose that, vice versa, selection for improved production efficiency may to some extent continue to favor docile domesticated phenotypes. It is hypothesized that both domestication and selection for improved production efficiency may result in the selection of reactive style animals. Both domesticated and reactive style animals are characterized by low levels of aggression and activity, and increased serotonin neurotransmitter levels. However, whereas domestication quite consistently results in a decrease in the functional state of the HPA axis, the reactive coping style is often found to be dominated by a high HPA response. This may suggest that fearfulness and coping behavior are two independent underlying dimensions to the coping response. Although it is generally proposed that animal welfare improves with selection for calmer animals that are less fearful and reactive to novelty, animals bred to be less sensitive with fewer desires may be undesirable from an ethical point of view.


Effects of Diet and Genetics on Growth Performance of Pigs in Response to Repeated Exposure to Heat Stress

WM Rauw, EJ Mayorga, SM Lei, JCM Dekkers, JF Patience, NK Gabler, SM Lonergan, LH Baumgard

Frontiers in Genetics 2017, Volume 8, Article 155, pp 1-18

Heat stress (HS) is one of the costliest issues in the U.S. pork industry. Aims of the present study were to determine the consequences of repeated exposure to HS on growth performance, and the effects of a high fiber diet, the genetic potential for high lean tissue accretion, and the genetic potential for residual feed intake (RFI) on resilience to HS. Barrows (n = 97) from three genetic lines (commercial, high RFI, low RFI) where subjected three times to a 4-day HS treatment (HS1, HS2, and HS3) which was preceded by a 9-day neutral (TN) adaptation period (TN1) and alternated by 7-day periods of neutral temperatures (TN2, TN3, and TN4). Body weight gain (BWG), feed intake (FI), feed conversion efficiency (FCE), RFI, and the drop in BWG and FI between TN and HS were estimated for each period, and slaughter traits were measured at the end of TN4. Commercial pigs had lower FI when fed a high fiber diet compared to a regular diet (2.70 ± 0.08 vs. 2.96 ± 0.08 kg/d; P < 0.05), while no differences were found for BWG, RFI or FCE. HS reduced FI, BWG, and FCE, increased RFI, and resulted in leaner pigs that generate smaller carcasses at slaughter. In TN, commercial pigs grew faster than the low and high RFI pigs (1.22 ± 0.06 vs. 0.720 ± 0.05 and 0.657 ± 0.07; P < 0.001) but growth rates were not significantly different between the lines during HS. Growth rates for the low RFI and high RFI pigs were similar both during TN and during HS. Pigs of interest for genetic improvement are those that are able to maintain growth rates during HS. Our results show that response in growth to HS was repeatable over subsequent 4-d HS cycles, which suggests the potential for including this response in the breeding index. The best performing animals during HS are likely those that are not highly superior for growth in TN.